NEW STANDARD ACADEMY

SEMRI KOTHI SUPER MARKET, RAEBARELI

CLASS 11 (Maths) DPP (Academy)

1. $\frac{\sin \theta}{1-\cot \theta}+\frac{\cos \theta}{1-\tan \theta}=$
2. The value of $\frac{\tan ^{2} 20^{\circ}-\sin ^{2} 20^{\circ}}{\tan ^{2} 20^{\circ} \cdot \sin ^{2} 20^{\circ}}$ is
3. if $\frac{\sin ^{2} x-2 \cos ^{2} x+1}{\sin ^{2} x+2 \cos ^{2} x-1}=4$, then the value of $2 \tan ^{2} x$ is
4. If $\sin \theta, \tan \theta$ and $\cos \theta$ are in G.P., then $4 \sin ^{2} \theta-3 \sin ^{4} \theta+\sin ^{6} \theta=$
5. If $\tan \theta-\cos \theta=a$ and $\sin \theta+\cos \theta=b$, then $\left(b^{2}-1\right)^{2}\left(a^{2}+4\right)$ is equal to
6. If $13 \sec \theta-5 \tan \theta=13$ then the sum of possible values of $13 \tan \theta-5$ $\sec \theta$ is
7. If $\frac{\cos \alpha}{\cos A}+\frac{\sin \alpha}{\sin A}=\frac{\cos \beta}{\cos A}+\frac{\sin \beta}{\sin A}=1$, Where $\alpha \neq \beta$, then $\left\lvert\, \frac{\cos \alpha \cos \beta}{\cos ^{2} A}+\right.$ $\left.\frac{\sin \alpha \sin \beta}{\sin ^{2} A} \right\rvert\,=$
8. The two legs of a right triangle measure
$\sin \theta+\sin \left(\frac{3 \pi}{2}-\theta\right)$ and $\cos \theta-\cos \left(\frac{3 \pi}{2}-\theta\right)$.the length of its hypotenuse is
9. The sum $\left(\sin \frac{\pi}{9}+\sin \frac{2 \pi}{9}+\sin \frac{3 \pi}{9}+\cdots+\sin \frac{17 \pi}{9}\right)$ equals to
10. The value of $\left(\cos ^{2} 73^{\circ}+\cos ^{2} 47^{\circ}-\sin ^{2} 43^{\circ}+\sin ^{2} 107^{\circ}\right)$ is equal
11. If $A B C D$ is cyclic quadrilateral such that $12 \tan A-5=0$ and $5 \cos B+3=0$, then the quadratic equation whose roots are cas $B+3=0$ then the quadratic equation whose roots are $\cos C$ and $\tan D$ is
12. If in a triangle $A B C, \tan A+\tan B+\tan C$ has the value 6 , then the value of $6 \cot A \cot B \cot C$ is
13. If $\cos (\alpha-\beta)+\cos (\beta-\gamma)+\cos (\gamma-\alpha)=-\frac{3}{2}, \cos \alpha+\cos \beta+\cos \gamma=\mathrm{p}$ and $\sin \alpha+\sin \beta+\sin \gamma=q$ then the value of $3 p+4 q$ is
14. $\frac{2 \sin \theta \tan \theta(1-\tan \theta) 2 \sin \theta \sec ^{2} \theta}{(1-\tan \theta)^{2}}$
15. if $\mathrm{p}=\frac{2 \sin }{1+\cos \theta+\sin \theta}$, and $q=\frac{\cos \theta}{1+\sin \theta}$, then
16. The value cas $105^{\circ}+\sin 105^{\circ}$ is
17. $\sin 50^{\circ}-\sin 70^{\circ}+\sin 10^{\circ}=$
18. If $\tan x+\tan \left(\frac{\pi}{3}+x\right)+\tan \left(\frac{2 \pi}{3}+x\right)=3$ then
19. The expression $2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}$ is equal
20. $\cos ^{2}\left(\frac{\pi}{4}-\beta\right)-\sin ^{2}\left(\alpha-\frac{\pi}{4}\right)=$

NEW STANDARD ACADEMY

SEMRI KOTHI SUPER MARKET, RAEBARELI

CLASS 12 (Maths) DPP (Academy)

1. If the system of linear equations
$x+2 a y+a z=0$
$x+3 b y+b z=0$
$x+4 c y+c z=0$
has non-zero solution ,then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
2. The system of homogeneous equations,
$t x+(t+1) y+(t-1) z=0$
$(t+1) x+t y+(t+2) z=0$
And $(t-1) x+(t+2) y+t z=0$
has a non-trivial solution for
3. The values of θ and λ for which the system of equations
$(\sin \theta) x-(\cos \theta) y+(\lambda+1) z=0$
$(\cos \theta) x+(\sin \theta) y-\lambda z=0$
And $\lambda x+(\lambda+1) y+(\cos \theta) z=0$
has non -trivial solution are
4. If the system of equations
$\mathrm{x}-2 \mathrm{y}+\mathrm{z}=\mathrm{a}$;
$2 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=\mathrm{b}$;
and $x+3 y-3 z=c$
has at least one solution then
5. Number of values of c for which the system of equations $c x+y+1=0$; $x+c y+2=0$; and $x+y+1=0$ is consistent is
6. If system of linear equations $(\mathrm{a}-1) \mathrm{x}+\mathrm{z}=\alpha ; x+(b-1) y=\beta$ and $y+$ $(c-1) z=\gamma$, where $a b c \in I$, does not have a unique solution then maximum possible value of $|\mathrm{a}+\mathrm{b}+\mathrm{c}|$ is
7. If $\mathrm{A}-2 \mathrm{~B}=\left[\begin{array}{ll}1 & 5 \\ 3 & 7\end{array}\right]$ and $2 \mathrm{~A}-3 \mathrm{~B}=\left[\begin{array}{cc}-2 & 5 \\ 0 & 7\end{array}\right]$, then matrix B is equal to
8. Given $\mathrm{A}=\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right], \mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. If $\mathrm{A}-\lambda I$ is a singular matrix, then
9. If the trace of the matrix

$$
A=\left[\begin{array}{cccc}
x-1 & 0 & 2 & 5 \\
3 & x^{2}-2 & 4 & 1 \\
-1 & -2 & x-3 & 1 \\
2 & 0 & 4 & x^{2}-6
\end{array}\right] \text { is } 0 \text {, then } x \text { is equal }
$$

to
10. If A is a square matrix of order 2 , then $-\operatorname{tr}\left(\mathrm{A}^{2}\right)+(\operatorname{tr}(\mathrm{A}))^{2}$ is equal to
11. Let $\mathrm{A}=\left[\begin{array}{ccc}-5 & -8 & -7 \\ 3 & 5 & 4 \\ 2 & 3 & 3\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{l}x \\ y \\ 2\end{array}\right]$. If $A B$ is a scalar multiple of B then the point (x, y) lies on the line whose
12. Let A be a 2×3 matrix whereas B be a 3×2 matrix .If det. $(A B)=4 t$ the value of det. (BA) is
13. The number of 2×2 matrices A, that are there with the elements as 1 numbers satisfying $A+A^{T}=I$ and $A A^{T}=I$ is
14. If $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$ and X is a non-zero column matrix such that $\mathrm{AX}=\lambda X$, where λ is a scalar then values if λ can be
15. If $A=k\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$ is matrix such $A A^{T}=I$ then k is equal to
16. If the of $\prod_{k=1}^{50}\left[\begin{array}{cc}1 & 2 k-1 \\ 0 & 1\end{array}\right]$ is equal to $\left[\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right]$, then r is equal to
17. If $(A+B)^{2}=A^{2}+B^{2}$ and $|A|=2$ then $|b|=($ Where A and B are matrices c odd order)
18. Let A be a skew symmetric matrix such that $A^{2}=A$. Then
19. Let A and B be two square matrices of order 3 satisfying $A^{2}+B^{100}$ $=\left(A^{T}\right)^{2}$. Then $\operatorname{det}(B)$ is equal to \qquad -
20. Let A be a Square matrix such that $A^{2}-5 A+7 I=0$.If $A^{5}=a A+b I$, then $|a+b|=$ \qquad -

